題目:Reanalysis of single-fiber pull-out test
報(bào)告人:卿海教授(南京航空航天大學(xué)航空宇航學(xué)院航空航天交叉研究院)
時(shí)間:2017年3月29日10:10
地點(diǎn):A18-209會(huì)議室
主辦單位:科協(xié)、航空宇航學(xué)院、航空航天交叉研究院、機(jī)械結(jié)構(gòu)力學(xué)及控制國(guó)家重點(diǎn)實(shí)驗(yàn)室
報(bào)告人簡(jiǎn)介:
卿海,男,教授,博士生導(dǎo)師,1998年9月-2002年7月,西安交通大學(xué),工程力學(xué)系,本科生;2002年9月-2007年7月,清華大學(xué)固體力學(xué),博士研究生(導(dǎo)師楊衛(wèi)院士);2007年11月-2011年2月,丹麥技術(shù)大學(xué),博士后;2011年3月-2014年6月,西門子風(fēng)能公司(丹麥),風(fēng)機(jī)復(fù)合材料葉片高級(jí)研發(fā)工程師;2014年7月起,南京航空航天大學(xué),教授。2013年受聘“江蘇特聘教授”;2016年入選江蘇省六大人才高峰。長(zhǎng)期從事先進(jìn)材料與結(jié)構(gòu)的研究工作,尤其應(yīng)用計(jì)算固體力學(xué)從事科學(xué)研究與工業(yè)產(chǎn)品研發(fā)工作。在西門子工作期間,作為項(xiàng)目主管、項(xiàng)目首席結(jié)構(gòu)工程師及結(jié)構(gòu)工程師參與完成西門子風(fēng)能公司的多個(gè)風(fēng)機(jī)復(fù)合材料葉片相關(guān)的技術(shù)攻關(guān)項(xiàng)目。
報(bào)告摘要:
A new theoretical model is developed in order to predict the stress transfer during the quasistatic single-fibre pullout process. The theoretical approach retains all relevant stress and strain components, and satisfies exactly the interfacial continuity conditions and all the stress boundary conditions. For both matrix and fibre, the equilibrium equations along radial direction are satisfied strictly, while the equilibrium equations along axial direction are satisfied in the integral forms. Three normal stress-strain relationships are strictly satisfied, while the radial displacement gradient with respect to the axial direction is neglected for shear stress-strain relationship. The general solutions of the axial and radial displacements in both fibre and matrix are obtained in explicit forms. In the debonded region, a modified Coulomb’s friction law, in which the frictional coefficient is a decreasing function of pullout rate, is applied to determine the interfacial frictional stress. A theoretical analysis for the single-fiber pullout with unload process is presented based on the energy-based debonding criterion and the modified analysis of stress transfer between fiber and matrix. The relationship between the applied stress and the interfacial relative displacement is expressed as a function of the radial residual thermal stress, fiber pullout rate and volume content as well as the length of reverse frictional sliding. The influence of fiber pullout rate on interfacial frictional coefficient is also taken into consideration. The theoretical results from present model agree well with the results from finite element model. The calculation results show that the applied stress result in further debonding increases with the increase of the radial residual thermal stress and the fiber volume content and the decrease of the fiber pull-out rate. There is a drop for the applied stress when the interface debonding close to the model length and the drops of short models are larger than those of long models. Under different conditions, the model length almost has no influence on the debonding and reverse sliding in unloading processes at the initial debonding region.



